
CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

CSCE 2110
Foundations of Data Structures

Priority Queues

University of North Texas

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

Contents

• Priority Queues

• Heaps

• Heapsort

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

Priority Queue ADT

• Priority Queue is an extension of queue with
following properties:
o Entries consist of key (priority) and value.

o Entries in priority queue are ordered by key

o An entry with high key is dequeued before an element
with low key.

o If two entries have the same key, they are served
according to their order in the queue.

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

Priority Queue ADT

• A typical priority queue supports following
operations:
o insert(key, value): Inserts an item with given key.

o min/max(): Returns the smallest/largest key item.

o removemin()/removemax(): Removes the
smallest/largest key item.

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

Heap
• Tree-based data structure

• A complete tree

o every level, except
possibly the last, is filled,
and all nodes are as far
left as possible

• Satisfies the heap property:

o if 𝑃 is a parent node of 𝐶,
then the key of 𝑃 is either
greater than or equal to
(in a max heap) or less
than or equal to (in a min
heap) the key of 𝐶.

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

Heap

(min) Heap or Not a (min) Heap?

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

Heap

(min) Heap or Not a (min) Heap?

Min heap NOT a min heap

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

Heaps – Max Heap

• A max heap is a heap such that for each node except
the root, the parent of node 𝑖 is greater than or equal
to node 𝑖 (max-heap property)

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

Heaps – Max Heap

• A max heap is a heap such that for each node except
the root, the parent of node 𝑖 is greater than or equal
to node 𝑖 (max-heap property)

NOT a max heap Max heap

For max heap, where is the largest element?
where is the smallest element?

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

Binary Heap

• An array, visualized as a complete binary tree

• Often refer as heap

• Height of a binary heap is 𝑂(lg 𝑛)

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

Heap as a Tree

• root of tree: first element in the array, corresponding
to 𝑖 = 1

• parent(𝑖)= 𝑖/2: returns the index of node's parent

• left(𝑖)= 2𝑖: returns the index of node's left child

• right(𝑖)= 2𝑖 + 1: returns the index of node's right child

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

Heap as a Tree

• root of tree: first element in the array, corresponding
to 𝑖 = 1

• parent(𝑖)= 𝑖/2: returns the index of node's parent

• left(𝑖)= 2𝑖: returns the index of node's left child

• right(𝑖)= 2𝑖 + 1: returns the index of node's right child

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

Heap Operations

For max heap:
• max: return the maximum item

• extract_max: return and remove the maximum item

• build_max_heap: produce a max-heap from an
unordered array

• max_heapify: correct a single violation of the heap
property in a subtree at its root

• insert

• heapsort

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

max_heapify

• Assume that the trees/subtrees rooted at left(𝑖) and
right(𝑖) are max-heaps

• If element 𝐴[𝑖] violates the max-heap property, correct
violation by “trickling” element 𝐴[𝑖] down the tree,
making the subtree rooted at index 𝑖 a max-heap

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

max_heapify: example

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

max_heapify: example

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

max_heapify: example

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

max_heapify: pseudocode

max_heapify(A, i):

 l = left(i)

 r = right(i)

 if (l <= heap-size(A) and A[l] > A[i])

 then largest = l else largest = i

 if (r <= heap-size(A) and A[r] > A[largest])

 then largest = r

 if largest != i

 then exchange A[i] and A[largest]

 max_heapify(A, largest)

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

build_max_heap(A)

• Converts 𝐴[1 … 𝑛] to a max heap

 build_max_heap(A):

 for i=n/2 down to 1

 do max_heapify(A, i)

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

build_max_heap(A)

• Converts 𝐴[1 … 𝑛] to a max heap

 build_max_heap(A):

 for i=n/2 down to 1

 do max_heapify(A, i)

• Why start at 𝑛/2?

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

build_max_heap Demo

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

build_max_heap Demo

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

build_max_heap Demo

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

Insert

𝑖𝑛𝑠𝑒𝑟𝑡(𝑘)
• Let X be the new entry k

• Place X at the bottom level of the tree, at first free spot
from left; i.e., first free location in array

• Bubbles up tree until heap property is satisfied (max-
heapify)

o Repeat:
➢ Compare X’s key with its parent’s key

➢ If X’s key is larger, exchange

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

True or False

• A max heap forms, if keys 2𝑘−1 to 1 are inserted in order
into an initially empty array.

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

max

• ?

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

max

• Return entry at root

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

extract_max

• Return and remove entry at
root

• Save item at root for
return value

• Fill root with last item “X”
in tree

• Bubble “X” down the heap
(max-heapify)

o Repeat: If X < one or both
of its children, swap X with
its maximum child

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

Heapsort

How does knowing the maximum element of an
array 𝐴 help in sorting 𝐴?

• Build a heap for A

• Get the maximum

• Put it in place (exchange with the last item)

• Update the heap accordingly, reduce size, max-heapify

• Get the new maximum

• Put it in place

• Update the heap accordingly, reduce size, max-heapify

• ...

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

Heapsort

Sorting Strategy:

• Build Max Heap from unordered array;

• Find maximum element 𝐴[1];

• Swap elements 𝐴[𝑛] and 𝐴[1]: now max element is at the

end of the array!

• Discard node 𝑛 from heap (by decrementing heap-size

variable)

• New root may violate max heap property, but its

children are max heaps. Run max_heapify to fix this.

• Go to Step 2 unless heap is empty.

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

Heapsort Demo

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

Heapsort Demo

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

Heapsort Demo

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

Heapsort Demo

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

Heapsort

• after 𝑛 iterations the Heap is empty

• every iteration involves a swap and a max_heapify
operation;

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35

