

CSCE 2110 Foundations of Data Structures

Priority Queues

Contents

- Priority Queues
- Heaps
- Heapsort

Priority Queue ADT

- Priority Queue is an extension of queue with following properties:
 - Entries consist of key (priority) and value.
 - Entries in priority queue are ordered by key
 - An entry with high key is dequeued before an element with low key.
 - If two entries have the same key, they are served according to their order in the queue.

Priority Queue ADT

- A typical priority queue supports following operations:
 - insert(key, value): Inserts an item with given key.
 - min/max(): Returns the smallest/largest key item.
 - removemin()/removemax(): Removes the smallest/largest key item.

Heap

- Tree-based data structure
- A complete tree
 - every level, except possibly the last, is filled, and all nodes are as far left as possible

- Satisfies the heap property:
 - o if P is a parent node of C, then the key of P is either greater than or equal to (in a max heap) or less than or equal to (in a min heap) the key of C.

Heap

(min) Heap or Not a (min) Heap?

Heap

(min) Heap or Not a (min) Heap?

Min heap

NOT a min heap

Heaps - Max Heap

 A max heap is a heap such that for each node except the root, the parent of node i is greater than or equal to node i (max-heap property)

Heaps - Max Heap

 A max heap is a heap such that for each node except the root, the parent of node i is greater than or equal to node i (max-heap property)

NOT a max heap

Max heap

For max heap, where is the largest element? where is the smallest element?

Binary Heap

- An array, visualized as a complete binary tree
- Often refer as heap
- Height of a binary heap is $O(\lg n)$

Heap as a Tree

- root of tree: first element in the array, corresponding to i = 1
- parent(i)= i/2: returns the index of node's parent
- left(i)= 2i: returns the index of node's left child
- right(i)= 2i + 1: returns the index of node's right child

Heap as a Tree

- root of tree: first element in the array, corresponding to i = 1
- parent(i)= i/2: returns the index of node's parent
- left(i)= 2i: returns the index of node's left child
- right(i)= 2i + 1: returns the index of node's right child

Heap Operations

For max heap:

- max: return the maximum item
- extract_max: return and remove the maximum item
- build_max_heap: produce a max-heap from an unordered array
- max_heapify: correct a single violation of the heap property in a subtree at its root
- insert
- heapsort

max_heapify

- Assume that the trees/subtrees rooted at left(i) and right(i) are max-heaps
- If element A[i] violates the max-heap property, correct violation by "trickling" element A[i] down the tree, making the subtree rooted at index i a max-heap

max_heapify: example

max_heapify: example

max_heapify: example

max_heapify: pseudocode

```
max heapify(A, i):
   l = left(i)
   r = right(i)
   if (1 \le \text{heap-size}(A) \text{ and } A[1] > A[i])
      then largest = 1 else largest = i
   if (r \le heap-size(A)) and A[r] > A[largest]
      then largest = r
   if largest != i
      then exchange A[i] and A[largest]
            max heapify(A, largest)
```

build_max_heap(A)

• Converts $A[1 \dots n]$ to a max heap

```
build_max_heap(A):
   for i=n/2 down to 1
      do max_heapify(A, i)
```

build_max_heap(A)

• Converts $A[1 \dots n]$ to a max heap

```
build_max_heap(A):
   for i=n/2 down to 1
      do max_heapify(A, i)
```

• Why start at n/2?

build_max_heap Demo

build_max_heap Demo

MAX-HEAPIFY (A,2) Swap A[2] and A[5] Swap A[5] and A[10]

MAX-HEAPIFY (A,1) Swap A[1] with A[2] Swap A[2] with A[4] Swap A[4] with A[9]

build_max_heap Demo

Insert

insert(k)

- Let X be the new entry k
- Place X at the bottom level of the tree, at first free spot from left; i.e., first free location in array
- Bubbles up tree until heap property is satisfied (maxheapify)
 - Repeat:
 - Compare X's key with its parent's key
 - > If X's key is larger, exchange

True or False

• A max heap forms, if keys 2^{k-1} to 1 are inserted in order into an initially empty array.

• ?

max

Return entry at root

extract_max

- Return and remove entry at root
- Save item at root for return value
- Fill root with last item "X" in tree
- Bubble "X" down the heap (max-heapify)
 - Repeat: If X < one or both of its children, swap X with its maximum child

Heapsort

How does knowing the maximum element of an array A help in sorting A?

- Build a heap for A
- Get the maximum
- Put it in place (exchange with the last item)
- · Update the heap accordingly, reduce size, max-heapify
- Get the new maximum
- Put it in place
- Update the heap accordingly, reduce size, max-heapify
- •

Heapsort

Sorting Strategy:

- Build Max Heap from unordered array;
- Find maximum element A[1];
- Swap elements A[n] and A[1]: now max element is at the end of the array!
- Discard node n from heap (by decrementing heap-size variable)
- New root may violate max heap property, but its children are max heaps. Run max heapify to fix this.
- Go to Step 2 unless heap is empty.

Heapsort

- after n iterations the Heap is empty
- every iteration involves a swap and a max_heapify operation;