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Priority Queue ADT

• Priority Queue is an extension of queue with 
following properties:
o Entries consist of key (priority) and value.

o Entries in priority queue are ordered by key

o An entry with high key is dequeued before an element 
with low key.

o If two entries have the same key, they are served 
according to their order in  the queue.
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Priority Queue ADT

• A typical priority queue supports following 
operations:
o insert(key, value): Inserts an item with given key.

o min/max(): Returns the smallest/largest key item.

o removemin()/removemax(): Removes the 
smallest/largest key item.
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Heap
• Tree-based data structure

• A complete tree

o every level, except 
possibly the  last, is filled, 
and all nodes are as  far 
left as possible

• Satisfies the heap property:

o if 𝑃 is a parent node of 𝐶, 
then the  key of 𝑃 is either 
greater than or  equal to 
(in a max heap) or less  
than or equal to (in a min 
heap)  the key of 𝐶.
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Heap

(min) Heap or Not a (min) Heap? 
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Heap

(min) Heap or Not a (min) Heap? 

Min heap NOT a min heap
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Heaps – Max Heap

• A max heap is a heap such that for each node except 
the root, the  parent of node 𝑖 is greater than or equal 
to node 𝑖 (max-heap  property)
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Heaps – Max Heap

• A max heap is a heap such that for each node except 
the root, the  parent of node 𝑖 is greater than or equal 
to node 𝑖 (max-heap  property)

NOT a max heap Max heap

For max heap, where is the largest element?  
where is the smallest element?
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Binary Heap

• An array, visualized as a complete binary tree

• Often refer as heap

• Height of a binary heap is 𝑂(lg 𝑛)
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Heap as a Tree

• root of tree: first element in the array, corresponding 
to 𝑖 = 1

• parent(𝑖)= 𝑖/2: returns the index of node's parent

• left(𝑖)= 2𝑖: returns the index of node's left child

• right(𝑖)= 2𝑖 + 1: returns the index of node's right child
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Heap as a Tree

• root of tree: first element in the array, corresponding 
to 𝑖 = 1

• parent(𝑖)= 𝑖/2: returns the index of node's parent

• left(𝑖)= 2𝑖: returns the index of node's left child

• right(𝑖)= 2𝑖 + 1: returns the index of node's right child
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Heap Operations

For max heap:
• max: return the maximum item

• extract_max: return and remove the maximum item

• build_max_heap: produce a max-heap from an 
unordered array

• max_heapify: correct a single violation of the heap 
property in a  subtree at its root

• insert

• heapsort
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max_heapify

• Assume that the trees/subtrees rooted at left(𝑖) and 
right(𝑖) are max-heaps

• If element 𝐴[𝑖] violates the max-heap property, correct 
violation by  “trickling” element 𝐴[𝑖] down the tree, 
making the subtree rooted at  index 𝑖 a max-heap
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max_heapify: example
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max_heapify: example



CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

max_heapify: pseudocode

max_heapify(A, i):

 l = left(i)  

 r = right(i)

 if (l <= heap-size(A) and A[l] > A[i])  

  then largest = l else largest = i

 if (r <= heap-size(A) and A[r] > A[largest])

  then largest = r

 if largest != i

  then exchange A[i] and A[largest]   

     max_heapify(A, largest)
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build_max_heap(A)

• Converts 𝐴[1 … 𝑛] to a max heap

 build_max_heap(A):  

  for i=n/2 down to 1

   do max_heapify(A, i)
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build_max_heap(A)

• Converts 𝐴[1 … 𝑛] to a max heap

 build_max_heap(A):  

  for i=n/2 down to 1

   do max_heapify(A, i)

• Why start at 𝑛/2?
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build_max_heap Demo
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build_max_heap Demo
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Insert

𝑖𝑛𝑠𝑒𝑟𝑡(𝑘)
• Let X be the new entry k

• Place X at the bottom level of the tree, at first free spot 
from left; i.e.,  first free location in array

• Bubbles up tree until heap property is satisfied (max-
heapify)

o Repeat:
➢ Compare X’s key with its parent’s key

➢ If X’s key is larger, exchange
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True or False

• A max heap forms, if keys 2𝑘−1 to 1 are inserted in order 
into an  initially empty array.
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max

• ?
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max

• Return entry at root
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extract_max

• Return and remove entry at 
root

• Save item at root for 
return value

• Fill root with last item “X” 
in tree

• Bubble “X” down the heap 
(max-heapify)

o Repeat: If X < one or both 
of its children, swap X with 
its maximum child
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Heapsort

How does knowing the maximum element of an 
array 𝐴 help in sorting 𝐴?

• Build a heap for A

• Get the maximum

• Put it in place (exchange with the last item)

• Update the heap accordingly, reduce size, max-heapify

• Get the new maximum

• Put it in place

• Update the heap accordingly, reduce size, max-heapify

• ...
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Heapsort

Sorting Strategy:

• Build Max Heap from unordered array;

• Find maximum element 𝐴[1];

• Swap elements 𝐴[𝑛] and 𝐴[1]: now max element is at the 

end of  the array!

• Discard node 𝑛 from heap (by decrementing heap-size 

variable)

• New root may violate max heap property, but its 

children are max  heaps. Run max_heapify to fix this.

• Go to Step 2 unless heap is empty.
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Heapsort Demo
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Heapsort Demo
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Heapsort

• after 𝑛 iterations the Heap is empty

• every iteration involves a swap and a max_heapify 
operation;
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